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Abstract

This paper introduces the concept of distribution distance for the measurement of errors in exact and approximate
methods for stochastic simulation of chemically reacting systems. Two types of distance are discussed: the Kolmogorov
distance and the histogram distance. The self-distance, an important property of Monte-Carlo methods that quantifies
the accuracy limitation at a given resolution for a given number of realizations, is defined and studied. Estimation for-
mulas are established for the histogram and the Kolmogorov self-distance. These formulas do not depend on the dis-
tribution of the samples, and thus show a property of the Monte-Carlo method itself. Numerical results demonstrate
that the formulas are very accurate. Application of these results to two problems of current interest in the simulation of
biochemical systems is discussed.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

In microscopic systems formed by living cells, the small numbers of reactant molecules can result in
dynamical behavior that is discrete and stochastic rather than continuous and deterministic [1–9]. The sto-
chasticity (often called biochemical noise by biologists) in microscopic systems has been implicated in the
lysis/lysogeny decision of the bacteria k-phage [3] and the loss of synchrony of Circadian clocks [4]. To
study the stochasticity in microscopic systems, engineered gene circuits have been designed and imple-
mented in the laboratory. The effects of stochasticity have been observed in biological experiments [6–9].
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Detailed models [1,2,10,11] for the expression of a single gene and gene networks have been proposed to
explain these experiments.

The comparison between models and experiments is verified through Monte-Carlo simulations. Such
simulations are based on Gillespie�s stochastic simulation algorithm (SSA) [12,13], which yields an exact
stochastic simulation for well-stirred chemically reacting systems. However, it can be prohibitively expen-
sive for realistic biochemical simulation. Approximate simulation methods have been proposed, such as the
s-leaping method [14], implicit s-method [15] and hybrid methods [16,17]. These methods can achieve
greater efficiency and give a close approximation to the SSA method. Two natural questions are concerned
here. One is: How should we measure the difference between the experiments and the Monte-Carlo simu-
lations? The other is: How should we measure the accuracy of approximate methods? We seek a quantita-
tive measurement. Typically, what is of interest from an experiment or a simulation are the stochastic
properties of the solution variables or of some function of the solution values, as opposed to the values
from one simulation. One possibility for measuring the error is to compute the errors in solution moments
such as the mean and variance. However, often the problems for which stochastic simulation makes a big
difference have a bistable distribution. A simple example of this type is given by the Schlögl [18] reaction.
Some well-known problems from biology [3,7,19] also have this property. For such problems, the low-order
moments such as mean and variance do not have much relevance. Rather, we need to know how well the
detailed model captures the probability distribution, or how well approximate methods capture the �exact�
probability distributions for the variables and properties of interest. To describe this error, in this paper we
adopt the concept of distribution distance. Two types of distribution distance are considered here. One is the
Kolmogorov distance [20,21], defined to measure the distance between cumulative distribution functions
(cdf). The other is the density distance area, defined as the L1 distance between the probability density func-
tions (pdf).

With the distribution distance, we can measure the accuracy of the distributions given by different
approximation formulas. There are very few systems for which we can analytically solve for the distri-
bution. Thus, for most problems, we must collect a large number of samples by experiments or by sim-
ulation methods such as SSA. The distribution is then estimated by the empirical distribution function
[22] (edf), or the histogram of the samples. For a sufficiently large number of samples, the edf is close to
the cdf, while the histogram is close to the pdf. However, in both experiment and computation the
number of samples is always limited. Thus, such a process is subject to an inherent error due to the
randomness of the variables of interest, which is traditionally called ‘‘statistical fluctuation’’ in the liter-
ature of Monte-Carlo simulations. In practice, we can measure this statistical fluctuation by the distance
between two sets of independent samples with the same distribution. We call it ‘‘self distance’’. This
concept is similar to that of the round-off error in classical numerical analysis. In that context, due
to the limited length of the storage for each variable, there is a ‘‘round-off error’’. In stochastic simu-
lation a simple limitation also exists, on the number of samples. For example, if there are two sets
of samples for which the distribution distance between them is smaller than their self distance, we can-
not tell whether or not these two sets of samples represent different distributions unless we increase the
number of samples (the analogous solution in the situation of round off error is to increase the reso-
lution of the floating point number representation). In numerical analysis, the round-off error is very
small (2.22 · 10�16 in Matlab). Thus, in many cases, we do not need to worry about it. But in stochastic
simulation, the self distance is usually much larger, so we must be aware of it. For example, in numer-
ical studies of the convergence of s-leaping methods [23], we have observed that regardless of how small
the stepsize is, we cannot obtain a set of samples arbitrarily close to the samples generated by the SSA
method. This is due to the self distance. In this paper, we introduce the concept of the self distance and
discuss its quantitative estimation. An important feature of this estimation is that it does not depend on
the distribution of the problem. This shows that self distance is actually an inherent property of the
Monte-Carlo method itself.
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The main contribution of this paper has two parts. First, we propose the use of distribution distance to
measure the error in Monte-Carlo simulations. Second, we give estimation formulas for the self distances.
The important feature is that these formulas are independent of problem distributions. We are aware of the
shortcoming of our measurement. The two distribution distances discussed here are based on the distribu-
tion of a scalar variable. Although the density area distance can also be generalized to measure the distri-
bution distance between two random vectors, as we will see later, the histogram self distance increases very
rapidly as the dimension of the vector increases. However, we can always measure the distribution distance
for each component of the vector. Moreover, in many practical problems, one is concerned not with the
states themselves, but with a low dimensional ‘‘output function’’ of the states. For these problems, the mea-
surement and error estimation discussed in this paper will still be very useful. We note that the distribution
distance discussed in this paper is limited to the distance between distributions at stationary states. Thus, it
is not directly applicable to the measurement of dynamical changes in the distribution. But it is not difficult
to generalize the concept of distribution distance to handle the latter situation. We will briefly discuss this
point in the last section.

The outline of this paper is as follows. In Section 2, we review the background of the SSA, s-leaping
methods, the Schlögl reaction, distribution functions and Kolmogorov distance. In Section 3, we introduce
the concepts of the density distance area and the histogram distance, along with their applications to the
study of the accuracy of s-leaping methods. In Section 4, we discuss the self distance and present the esti-
mate of the self distance. In Section 5, we present some numerical experiments. Finally, in Section 6, we
briefly discuss the application of the distribution distance in two related areas and its generalization to mea-
sure the accuracy in the dynamical behavior.
2. Background

2.1. SSA and the s-leaping method

We are concerned with a chemically reacting system with N species {S1, . . . ,SN} and M reaction channels
{R1, . . . ,RM}. The dynamical state of the system is denoted by X = (X1(t), . . . ,XN(t)), where Xi(t) is the num-
ber of Si molecules at time t. The dynamics of reaction channel Rj is characterized by the propensity function
aj and by the state change vector mj = (m1j, . . . ,mNj): aj(x)dt gives the probability that one Rj reaction will oc-
cur in the next infinitesimal time interval [t,t + dt), and mij gives the change in the Si molecular population
induced by one Rj reaction.

The dynamics of the system obeys the chemical master equation (CME)
oPðx; tjx0; t0Þ
ot

¼
XM
j¼1

½ajðx� mjÞP ðx� mj; tjx0; t0Þ � ajðxÞPðx; tjx0; t0Þ�; ð1Þ
where the function P(x,tjx0,t0) denotes the probability that X(t) will be x given that X(t0) = x0. The CME is
hard to solve, both theoretically and numerically. An equivalent simulation method is the SSA [12,13]. SSA
generates numerical realizations of X(t). Both the CME and the SSA are exact consequences of the forego-
ing dynamical assumptions, so in spite of the difference in their descriptive thrusts, they are logically equiv-
alent to each other.

The SSA [12,13] is based on the next-reaction density function p(s,jjx,t) which is defined as the probabil-
ity, given X(t) = x, that the next reaction in the system will occur in the infinitesimal time interval
[t + s,t + s + dt) and will be an Rj reaction. It follows from the definition of aj that
pðs; jjx; tÞ ¼ ajðxÞ expð�a0ðxÞsÞ ðs P 0; j ¼ 1; . . . ;MÞ; ð2Þ
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where a0ðxÞ ¼
PM

j¼1ajðxÞ. The SSA generates s and j according to (2) and proceeds with time s and the state
vector by
X ðt þ sÞ ¼ X ðtÞ þ mj.
The SSA is exact in the sense that it generates the same distribution given by the CME. But it is also very
time-consuming because in each step, the simulation can only proceed with one reaction.

The s-leaping method [14] tries to accelerate the simulation by asking a different question: How many
times does each reaction channel fire in a subinterval of given length s? In each step, the s-leaping method
can proceed with many reactions. This is achieved at the cost of some accuracy. Defining
Kjðs; x; tÞ ¼ the number of times; given X ðtÞ ¼ x;

that reaction channel Rj will fire in the time interval ½t; t þ sÞ ðj ¼ 1; . . . ;MÞ; ð3Þ
the s-leaping method begins by assuming the Leaping Condition: Require s to be small enough that the
change in the state during [t,t + s) will be so slight that no propensity function will suffer an appreciable
change in its value. Then Kj(s;x,t) is given by the Poisson random variable
Kjðs; x; tÞ ¼ P ðajðxÞ; sÞ ðj ¼ 1; . . . ;MÞ; ð4Þ

where P(a,t) is the Poisson random variable with mean and variance at. The basic s-leaping method is:
Choose a value for s that satisfies the Leaping Condition. Generate for each j = 1, . . . ,M a sample value
kj of the Poisson random variable P(aj(x),s), and update the state by
X ðt þ sÞ ¼ xþ
X
j

kjmj. ð5Þ
Numerical experiments [14] have demonstrated the advantage of the s-leaping method. A convergence anal-
ysis [23] has shown that this method is of order 1 for the mean and variance. But for a system with bistable
states, the mean and variance do not have a physically significant meaning. If we want to study the conver-
gence properties of the s-leaping method for this type of problem, we should focus on the distribution
rather than the first few moments. The Schlögl reaction is just such an example.
2.2. Schlögl reaction

The Schlögl model is famous for its bistable distribution. It is comprised of a set of coupled chemical
reactions:
B1 þ 2X �
c1

c2
3X ;

B2 �
c3

c4
X ;

ð6Þ
where B1 and B2 denote buffered species whose respective molecular populations N1 and N2 are assumed to
remain essentially constant over the time intervals of interest. The state change vectors are m1 = m3 = 1,
m2 = m4 = �1. The propensity functions are:
a1ðxÞ ¼
c1
2
N 1xðx� 1Þ;

a2ðxÞ ¼
c2
6
xðx� 1Þðx� 2Þ;

a3ðxÞ ¼ c3N 2;

a4ðxÞ ¼ c4x.

ð7Þ



10 Y. Cao, L. Petzold / Journal of Computational Physics 212 (2006) 6–24
For some parameter values, this model has two stable states. This is the case for the parameter set that we
used in our simulation,
Fig. 1
c1 ¼ 3� 10�7; c2 ¼ 10�4; c3 ¼ 10�3; c4 ¼ 3.5; N 1 ¼ 1� 105; N 2 ¼ 2� 105. ð8Þ

The SSA or the s-leaping method can be applied to simulate the Schlögl model. The histogram generated
from SSA is shown in Fig. 1.

2.3. Distribution functions

A number of basic concepts and functions are important in the study of distributions. In the following
discussion, we focus on a scalar random variable X. The cumulative distribution function (cdf) is defined
as
F X ðxÞ ¼ P ðX 6 xÞ. ð9Þ

Another important function is the probability density function (pdf). For a continuous distribution, the pdf
is defined as
pX ðxÞ dx ¼ Pðx 6 X < xþ dxÞ; ð10Þ

while for a discrete distribution, the pdf is the d-function given by
pX ðxÞ ¼
X
x

P ðX ¼ xÞdðX � xÞ. ð11Þ
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. Histogram (10,000 samples) of X solved by the SSA method for the Schlögl reaction with x(0) = 250 and final time T = 4.
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It follows that
F X ðxÞ ¼
Z x

�1
pX ðsÞ ds. ð12Þ
In many practical problems, it is difficult or impossible to obtain an analytic distribution. Instead we obtain
samples from Monte-Carlo simulations or observations. With those samples, the empirical distribution
function (edf) is used to measure the cdf, and the histogram is used to measure the pdf. Let x1,x2, . . . ,xN
be independent random variables each having the same distribution as X. Defining the sign function
jðxÞ ¼
1; x P 0;

0; x < 0;

�
ð13Þ
the empirical distribution function is defined as
F N ðxÞ ¼
1

N

XN
j¼1

jðx� xjÞ. ð14Þ
The sum in (14) gives the number of points that are smaller than x. When it is divided by N, we obtain the
fraction of points smaller than x, which approximates the cdf. Suppose that all the sample values are
bounded in the interval I = [xmin,xmax). Let L = xmax � xmin. Divide the interval I into K subintervals
and denote the subintervals by I i ¼ ½xmin þ ði�1ÞL

K ; xmin þ iL
KÞ. We define the characteristic function v(x,Ii) as
vðx; I iÞ ¼
1 if x 2 I i;

0; otherwise.

�
ð15Þ
Then the pdf pX can be approximated by the histogram function hX computed from
hX ðI iÞ ¼
K
NL

XN
j¼1

vðxj; I iÞ. ð16Þ
The sum in (16) gives the number of points falling into the interval Ii. When that sum is divided by N we get
the fraction of the points inside that interval, which approximates the probability of a sample point lying
inside that interval. We divide this by the interval length, L/K, to approximate the probability density.
Thus, hX(Ii) measures the average density function of X in the interval Ii. When K tends to infinity, the
length of Ii reduces to 0. Then Ii is close to a point and hX is close to pX at that point.

2.4. Kolmogorov distance

For systems with a bistable distribution, such as the Schlögl reaction, the mean and variance do not have
a physically significant meaning. Instead we are more concerned with the distribution. Thus, we need to
measure the distance between distributions. One such measurement defined in information theory is the
Kolmogorov distance [20].

The Kolmogorov distance is the 1-distance of the cdf. For two random variables X and Y with cdf FX

and FY, the Kolmogorov distance is defined as
KðX ; Y Þ ¼ max
�1<x<1

jF X ðxÞ � F Y ðxÞj. ð17Þ
Note that the Kolmogorov distance is a function distance, as opposed to a variable distance. It has the fol-
lowing properties:
Scaling property : KðkX ; kY Þ ¼ KðX ; Y Þ;
Bound property : KðX ; Y Þ 6 1.

ð18Þ
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The Kolmogorov distance is used in the Kolmogorov–Smirnov test [21,22] for two classical problems in
statistics: the goodness-of-fit problem and the two-sample problem. Let X1,X2, . . . ,XN be independent ran-
dom variables following the same distribution U(x) = Pr(Xi < x). The goodness-of-fit problem is to devise a
test of the hypothesis
H 0 : UðxÞ ¼ F ðxÞ; ð19Þ

where F(x) is a given distribution function. Let Y1,Y2, . . . ,YM be independent random variables with the
common distribution V(x) = Pr(Yi < x). The two-sample problem is to devise a test of the hypothesis
H 0
0 : UðxÞ ¼ V ðxÞ. ð20Þ
Note that the two-sample problem is related to our problem of measuring the accuracy of the approxima-
tion formula. Thus, the Kolmogorov distance is a natural candidate for our purposes. In practice, we mea-
sure the Kolmogorov distance of the edf
KM ;N ðX ; Y Þ ¼ max
�1<x<1

jF N ;X ðxÞ � F M ;Y ðxÞj; ð21Þ
where FN,X and FM,Y are the corresponding edf for the two groups of samples Xi and Yj. Smirnov [24,25]
proved that, when M ! 1, N! 1,
Smn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MN

M þ N

r
KM ;N ðX ; Y Þ ð22Þ
has a limiting distribution
UðkÞ ¼
Xþ1

k¼�1
ð�1Þke�2k2k2 . ð23Þ
A short table [24] and an amplified table [26] are given for U values by Smirnov. For a given probability
tolerance, if Smn is larger than a particular value in the table, H 0

0 is rejected. Otherwise, it is accepted.
3. Density distance area

The Kolmogorov distance is a distance measure for the cdf. When the pdf is concerned, we need a distance
measure for it. There are several definitions of distribution distance for the pdf in the literature, for example
the Kullback–Leibler distance [27], the total variation distance [28] and the v2 distance [29]. SupposeX andY

have probability density functions pX and pY. We define the density distance between X and Y as
DðX ; Y Þ ¼
Z

jpX ðsÞ � pY ðsÞj ds. ð24Þ
When X and Y are integers, (24) becomes
DðX ; Y Þ ¼
X
n

ðjP ðX ¼ nÞ � P ðY ¼ nÞjÞ. ð25Þ
To simplify the derivation, we focus on (24), which gives the L1 distance of the pdf. We call this the density
difference area. According to Rosenthal [28], the density difference area is twice the total variation distance.
But this form is numerically easier to calculate. It is easy to derive some properties of the density distance
area. In particular, we have:
Scaling property : DðkX ; kY Þ ¼ DðX ; Y Þ;
Bound property : DðX ; Y Þ 6 2.

ð26Þ
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Since the Kolmogorov distance can also be written as
KðX ; Y Þ ¼ max
�1<x<1

Z x

�1
pX ðsÞ � pY ðsÞ ds

����
����; ð27Þ
it is obvious that
KðX ; Y Þ 6 DðX ; Y Þ. ð28Þ

Both the Kolmogorov distance and the density distance area can be used to measure accuracy. A notable
difference between them is that the density distance area takes the absolute value of the density difference
into account, while the Kolmogorov distance takes the sign into account. Because the signed differences
may cancel each other, the Kolmogorov distance may underestimate the difference.

In Monte-Carlo simulation, the pdf p(x) is approximated by the histogram h(x). For two groups of sam-
ples Xi and Yj, we have the histogram distance
DKðX ; Y Þ ¼
XK
i¼1

jhX ðI iÞ � hY ðI iÞjL
K

. ð29Þ
Substituting (16) into (29), we obtain
DKðX ; Y Þ ¼
XK
i¼1

PN
j¼1vðxj; I iÞ

N
�
PM

j¼1vðyj; I iÞ
M

�����
�����. ð30Þ
DK(X,Y) varies depending on the value of K. When K = 1 there is only one subinterval and we cannot tell
the difference between X and Y. When K becomes larger we obtain more detailed information about the
difference, and DK(X,Y) will increase. When K is very large we must generate a large number of samples,
otherwise there will not be enough data falling into each subinterval and there will be a large measurement
error. When K, N and M are sufficiently large, the histogram distance DK(X,Y) is close to the density dis-
tance area D(X,Y),
DKðX ; Y Þ ! DðX ; Y Þ as K;N ;M ! 1. ð31Þ

It can be verified that the histogram distance inherits the scaling and bound properties of the density dis-
tance area:
Scaling property : DKðkX ; kY Þ ¼ DKðX ; Y Þ;
Bound property : DKðX ; Y Þ 6 2.

ð32Þ
With the Kolmogorov distance and the histogram distance, we can measure the accuracy of an approxima-
tion formula. We applied the s-leaping method with different s�s to the Schlögl reaction and compared the
distribution distance to the samples generated from the SSA method. Table 1 shows the corresponding re-
sults with 10,000 samples for each s.

In Table 1, both the Kolmogorov distance and the histogram distance decrease when s decreases. This
numerically demonstrates that the solution obtained by the s-leaping method converges to that obtained by
the SSA as s ! 0, which agrees with the convergence analysis of the s-leaping method [15]. We note two
observations from Table 1. First, the Kolmogorov distance at s = 0.4 is smaller than the Kolmogorov dis-
tance at s = 0.04, while for the histogram distance the distance at s = 0.04 is smaller. This is due to the can-
cellation effect of the Kolmogorov distance. Fig. 2 shows the plot of the edf�s given by SSA and the s-
leaping method with s = 0.4. We can see that the edf difference has a sign change in the middle. As a result,
the Kolmogorov distance underestimates the difference, while the histogram distance gives a more mean-
ingful estimate for our purposes. But the histogram distance depends on the bin number K. It increases
as K increases.



Table 1
Kolmogorov distance and histogram distance comparison (10,000 samples) between the distributions given by the SSA and the s-
leaping method applied to the Schlögl reaction

Kolmogorov distance between SSA and the s-leaping method

s 0.4 0.1 0.04 0.01 0.004 0.001 0.0001
0.0681 0.0222 0.0714 0.0095 0.0083 0.0097 0.0117

Histogram distance between SSA and the s-leaping method

K/s 0.4 0.1 0.04 0.01 0.004 0.001 0.0001
50 0.2856 0.0976 0.1886 0.0712 0.0632 0.0570 0.0588
100 0.2888 0.1142 0.1954 0.0904 0.0878 0.0860 0.0874
200 0.3056 0.1542 0.2192 0.1242 0.1212 0.1356 0.1272
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Fig. 2. The edf given by SSA (solid line with ���) and the s-leaping method (dashed line with �*�) with s = 0.4. for the Schlögl reaction
with x(0) = 250 and final time T = 4.
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Second, since the s-leaping method converges to the SSA method, in the deterministic case one would
expect the distance to decrease to 0 as s ! 0. But for this example, when s < 0.01, these distribution dis-
tances do not decrease further as s ! 0. This is related to an importance feature when we measure the dis-
tribution difference of Monte-Carlo methods. We will call this property the self distance.
4. Self distance

Monte-Carlo methods are based on a limited number of simulations. Although the theory states that the
simulation converges to the real distribution when the number of samples tends to infinity, a limited num-
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ber of samples will always result in some difference from the real distribution. Moreover, any set of samples
has some distance from any other set of samples. For example, compare one set of 10,000 Monte-Carlo
samples with another set of 10,000 Monte-Carlo samples. For each set, we can generate a histogram or
an edf. To simplify the discussion, in the following we focus on the histogram. Due to the randomness,
the two histograms are not the same. We call the distribution distance between the two sets of samples
the self distance.

Definition 4.1. For two sets of samples that independently follow the same distribution,
XN = {x1, . . . ,xN} and YM = {y1, . . . ,yM}, the self distance is defined as the distribution distance between
the two samples XN and YM. The Kolmogorov self distance is K(XN,YM) and the histogram self distance
is DK(XN,YM).

Self distance reflects the nature of stochastic simulation. It plays a similar role to that of round-off error
in classical numerical analysis. Also it is related to the classical two-sample problem in statistics. When the
distribution distance of the two samples is less than the self distance of one sample, we would accept the
hypothesis H 0

0. Since the two sets of samples are random, the self distance is also random. The Kolmogorov
and Smirnov series of work [20,21,24–26] have shown that the Kolmogorov self distance has a distribution
which is distribution free (in the sense that it does not depend on the distribution of the samples). In this
section, we will show that a similar result applies to the histogram self distance. In the following, unless
specified, the self distance means the histogram self distance.

From Definition 4.1, the self distance depends on K, N, M and the distribution of the two sets of sam-
ples. In particular, we might expect a large difference in the self distance for different distributions. But for
sufficiently large N and M, the self distance for different distributions follows a common bound. We have
the following theorem.

Theorem 4.1. For sufficiently large N and M, the mean of the histogram self distance is bounded byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K
p

1
N þ 1

M

� �q
. The variance of the self distance is bounded by

ðp�2ÞK
p

1
N þ 1

M

� �
.

Proof. We first need the following two lemmas.

Lemma 4.2. For a random variable X that follows the normal distribution N(0, r2), the mean value of the
absolute value jXj satisfies
EðjX jÞ ¼
ffiffiffi
2

p

r
r. ð33Þ
The variance of jXj satisfies
VarðjX jÞ ¼ p� 2

p
r2. ð34Þ
Lemma 4.3. For the sum of random variables, we have:
E
XK
i¼1

X i

 !
¼
XK
i¼1

EðX iÞ; ð35Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

XK
i¼1

X i

 !vuut
6

XK
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðX iÞ.

p
ð36Þ
These two lemmas can be easily proved (see Appendix).



16 Y. Cao, L. Petzold / Journal of Computational Physics 212 (2006) 6–24
We begin from a detailed analysis of the histogram method. The domain is divided into K subintervals Ii,
i = 1, . . . ,K. On each subinterval, the probability that the random variable X will be in this subinterval is
pi ¼

R iL
K
ði�1ÞL

K

pX ðsÞ ds. In the histogram method, this is approximated by
qi ¼
1

N

XN
j¼1

vðxj; I iÞ. ð37Þ
We note that pi is a deterministic variable, while qi is a random variable. The self distance arises due to the
randomness of qi.

Let i be fixed. Because samples x1, . . . ,xN are independent of each other, for each j, v(xj,Ii) is an indepen-
dent random variable which follows the distribution P(v(xj,Ii) = 1) = pi, P(v(xj,Ii) = 0) = 1 � pi. Thus, the
sum Bi ¼

PN
j¼1vðxj; I iÞ has a binomial distribution B(pi,N) [30]. The mean and variance of Bi are given by

the classical result [30] for binomial distributions,
EðBiÞ ¼ Npi; VarðBiÞ ¼ Npið1� piÞ. ð38Þ
From (38), we can derive the mean and variance for qi = Bi/N,
EðqiÞ ¼ pi; VarðqiÞ ¼
pið1� piÞ

N
. ð39Þ
On the other hand, in (37), qi is the average value of N independent random variables v(xj,Ii) satisfying the
same distribution. From the central limit theorem, when N is sufficiently large, qi follows the normal dis-

tribution N pi;
pið1�piÞ

N

� �
. For the same reason, for another independent set of realizations x̂1; . . . ; x̂M , which

also obey the distribution of X, we have q̂i ¼ 1
M

PM
j¼1vðx̂j; I iÞ. Thus, when M is sufficiently large, q̂i follows

the normal distribution N pi;
pið1�piÞ

M

� �
. To consider the self distance, we study the difference di ¼ qi � q̂i.

Since qi and q̂i are independent random variables with normal distributions, the difference di also has
the normal distribution. The corresponding mean value is EðdiÞ ¼ EðqiÞ � Eðq̂iÞ ¼ 0. The variance is
pið1� piÞ 1

N þ 1
M

� �
. Thus, di satisfies the normal distribution N 0; pið1� piÞ 1

N þ 1
M

� �� �
. From Lemma 4.2, the

mean value of jdij is
EðjdijÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
pið1� piÞ

1

N
þ 1

M

� 	s
ð40Þ
and the variance of jdij is
VarðjdijÞ ¼
p� 2

p
pið1� piÞ

1

N
þ 1

M

� 	
. ð41Þ
The self distance is defined as
PK

i¼1jdij. Thus, the mean of the self distance can be bounded by
E
XK
i¼1

jdij
 !

¼
XK
i¼1

EðjdijÞ ¼
XK
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
pið1� piÞ

1

N
þ 1

M

� 	s
6

XK
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
1

N
þ 1

M

� 	s ffiffiffiffi
pi

p

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
1

N
þ 1

M

� 	s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
XK
i¼1

pi

vuut ðby Cauchy inequalityÞ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K
p

1

N
þ 1

M

� 	s
. ð42Þ
Because the di�s are not independent to each other, we do not have a sharp bound for the variance. Apply-
ing the inequality (36). we obtain the inequality
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Var
XK
i¼1

jdij
 !

6

XK
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðjdijÞ

p !2

¼
XK
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� 2

p
pið1� piÞ

1

N
þ 1

M

� 	s !2

6
ðp� 2ÞK

p
1

N
þ 1

M

� 	
. � ð43Þ
Remark 4.1. In our experience, the bound on the variance (43) is much larger than the observed variance.
The variance can be estimated much more accurately in the following. Practically when both N and M are
large, di may be treated as independent. Thus, the variance can be estimated by
Var
XK
i¼1

jdij
 !

�
XK
i¼1

VarðjdijÞ ¼
XK
i¼1

p� 2

p
pið1� piÞ

1

N
þ 1

M

� 	
6

ðp� 2Þ
p

1

N
þ 1

M

� 	
. ð44Þ
Then we have the following conjecture.2

Conjecture 4.1. For sufficiently large N and M, the variance of the self distance can be estimated by
p�2
p ð1N þ 1

MÞ.

Remark 4.2. For a practical estimate of the self distance, we use only the bound for the mean
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K
p

1
N þ 1

M

� �q
.

When N = M, the bound becomes
ffiffiffiffiffi
4K
pN

q
. Note that the self distance increases when K increases. Thus, if we

want to know more detailed information about a distribution, we will introduce a larger self distance. On
the other side, the self distance is proportional to the inverse of the square root of N. Thus, if we want to
obtain an r times more accurate distribution, we need r2 times more samples.

Remark 4.3. In this paper, we focus on scalar random variables. The histogram distance can be generalized
to measure the distribution distance of multi-dimension random vectors, In this case, K will be the product
of Ki, where Ki is the number of splitting on the ith dimension. It is easy to see that as the dimension
increases, K increases exponentially with the dimension. According to (42), the self distance may increase
dramatically as well. Thus, high dimensional histogram distance is not practical due to the self distance.

Remark 4.4. This bound explains Table 1. For s P 0.01, the error is due to the error of the s-leaping
method. Around s = 0.01, the distance is within the self distance of the SSA method. Thus, when we further
decrease s, the self distance always remains. We cannot obtain a smaller distance unless we increase the
number of samples. This is very similar to the situation in classical numerical analysis of ordinary differ-
ential equations. Usually, we are only concerned with the truncation error of an integration formula.
But when the stepsize is very small, the truncation error may have the same magnitude as the round-off
error. In that case, we cannot improve the accuracy further unless we change the arithmetic precision.
The difference here is only that the self distance is relatively much larger than round-off error.

For the Kolmogorov self distance, we can also estimate the mean value. We have the following theorem.

Theorem 4.4. For a continuous distribution function and sufficiently large N and M, the mean of the

Kolmogorov self distance is bounded by
ffiffi
p
2

p
log 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1
N þ 1

M

q
. The variance of the Kolmogorov self distance is

bounded by p2=12� p
2 log

22
� �

1
N þ 1

M

� �
Proof. According to Kolmogorov [20,21,25], for two groups of samples Xi and Yj with the same continuous

distribution function and sufficiently large N and M, Smn ¼
ffiffiffiffiffiffiffiffi
MN
MþN

q
KM ;NðX ; Y Þ has the limiting distribution

(23), which can be rewritten as
is is called a conjecture because the derivation of this formula is based on the assumption that di may be treated as independent.
ssumption is actually not valid. But when both N and M are large, it is often assumed in Monte-Carlo practice.
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UðkÞ ¼ 1� 2
Xþ1

k¼1

ð�1Þk�1e�2k2k2 . ð45Þ
Thus, the mean of Smn can be calculated by
EðSmnÞ ¼
Z þ1

0

k dUðkÞ ¼ �2
X1
k¼1

ð�1Þk�1

Z þ1

0

k dðe�2k2k2Þ. ð46Þ
For each k, we have
Z þ1

0

kdðe�2k2k2Þ ¼ ke�2k2k2 j10 �
Z þ1

0

e�2k2k2 dk ¼ � 1ffiffiffi
2

p
k

Z 1

0

e�k2 dk ¼ � 1ffiffiffi
2

p
k

ffiffiffi
p

p

2
. ð47Þ
Summing them up we obtain
EðSmnÞ ¼
ffiffiffi
p
2

r X1
k¼1

ð�1Þk�1 1

k
¼

ffiffiffi
p
2

r
log 2. ð48Þ
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Similarly, the second moment of Smn can be calculated by
Fig. 4.
uniform
EðS2
mnÞ ¼

Z þ1

0

k2 dUðkÞ ¼
X1
k¼1

1

2k2
¼ p2

12
. ð49Þ
Thus, the variance of Smn is
VarðSmnÞ ¼ EðS2
mnÞ � E2ðSmnÞ ¼

p2

12
� p

2
log22. ð50Þ
From the definition of Smn, the mean of the Kolmogorov self distance is
ffiffi
p
2

p
log 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1
N þ 1

M

q
and the corre-

sponding variance is p2

12
� p

2
log22

� �
1
N þ 1

M

� �
. h
5. Numerical experiments

To verify the theoretical results and conjectures, we generated samples for different distributions. The
distributions we chose are the uniform distribution U(0,1), the normal distribution N(0,1) in Matlab,
and the distribution generated from the Monte-Carlo simulation of the Schlögl model. For each distribu-
tion we generated two independent sets of samples for each N. To make the experiments simple, we always
let N =M. The self distance is then measured by the histogram distance using different bin numbers K and
the Kolmogorov distance of the two sets of samples. The results are plotted in Fig. 3 (�log(histogram self
distance) vs. log(N)), Fig. 4 (�log(histogram self distance) vs. log(K)) and Fig. 5 (�log(Kolmogorov self
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q
.
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distance) vs. log(N)). In all of the figures, we also plot the bound of the mean value:
ffiffiffiffiffi
4K
pN

q
for the histogram

self distance and log 2
ffiffiffi
p
N

p
for the Kolmogorov self distance. In a few cases the self distance exceeds the

bound. This is because the bound is for the mean. A single sample may generate a value away from the
mean. But in most cases the formulas give quite accurate estimates of the self distances. An important
observation from these figures is that, for a fairly large number of samples, the fact that the self distances
are close to our estimates is independent of their original distributions. We obtained similar results from
Table 2
Mean and variance of histogram self distance for different N, K and distributions

Distribution N K Mean
ffiffiffiffiffi
4K
pN

q
Var p�2

p
2
N

Normal 10,000 10 0.0253 0.0357 7.26 · 10�5 7.27 · 10�5

10,000 20 0.0377 0.0505 7.57 · 10�5 7.27 · 10�5

10,000 40 0.0546 0.0714 7.72 · 10�5 7.27 · 10�5

Uniform 10,000 10 0.0339 0.0357 6.93 · 10�5 7.27 · 10�5

10,000 20 0.0488 0.0505 7.35 · 10�5 7.27 · 10�5

10,000 40 0.0701 0.0714 6.79 · 10�5 7.27 · 10�5

Schlögl reaction 1000 10 0.0914 0.1128 6.64 · 10�4 7.27 · 10�4

1000 20 0.1341 0.1596 7.20 · 10�4 7.27 · 10�4

1000 40 0.1910 0.2257 7.66 · 10�4 7.27 · 10�4



Table 3
Mean and variance of Kolmogorov self distance for different N and distributions

Distribution N Mean log 2
ffiffiffi
p
N

p
Var p2

6 � plog22
� �

1
N

Normal 10,000 0.0121 0.0123 1.3392 · 10�5 1.355 · 10�5

Uniform 10,000 0.0122 0.0123 1.2895 · 10�5 1.355 · 10�5

Schlögl reaction 1000 0.0373 0.0389 1.3696 · 10�4 1.355 · 10�4
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Monte-Carlo simulations of chemically reacting systems other than the Schlögl reactions. The experiments
demonstrated two facts. The first is that the self distance is a feature of Monte-Carlo simulation indepen-
dent of problem distribution. The second is that our estimate formulas are quite accurate.

To further verify the bound for the variance of the self distance, we generated 1000 independent self dis-
tances from each set of different N, K and distributions. We computed the mean and variance and com-

pared it with the proved bound
ffiffiffiffiffi
4K
pN

q
for the mean value of the histogram self distance and log 2

ffiffiffi
p
N

p
for

the mean value of the Kolmogorov self distance, the variance estimation p�2
p

2
N for the variance of the his-

togram self distance and the variance bound p2

6
� plog22

� �
1
N for the Kolmogorov self distance. The results

are listed in Tables 2 and 3. We can see that the means are always bounded by our estimates. The Kolmogo-
rov self distance is always very close to our estimates. The variances of the histogram self distance is close to
the estimated values. When N = 1000, the variances of the Kolmogorov self distance is a little larger than
the variance bound but when N = 10,000, the variance of the Kolmogorov self distance is smaller than the
bound.
6. Conclusion and discussion

In this paper, we have introduced the concept of distribution distance to measure the errors in exact and
approximate methods for stochastic simulation of chemically reacting systems. Self distance, an important
property of the Monte-Carlo method, was defined and studied. We derived estimation formulas for the
bounds of the mean and variance values of two kinds of self distance, Numerical experiments demonstrated
the accuracy of our estimation formulas and the fact that the estimation formulas are independent of the
problem distribution.

Recently, we have applied the distribution distance and the self distance to two related Monte-Carlo
applications. One direct application involves the use of stochastic sensitivity analysis to study the robust-
ness [31] of biochemical systems. In this work, the distribution distance between an original distribution and
a perturbed distribution was used to measure the sensitivity of the distribution with respect to parameter
perturbations. The perturbation to the parameters should be relatively small according to the definition
of sensitivity. But it should not be so small that the distribution distance between the original distribution
and the perturbed one is less than the corresponding self distance. The estimation formulas for the self dis-
tances proved to be a useful tool in selection of the perturbation size.

In a second application, we used the distribution distance to measure the convergence rate of s-leaping
methods [23]. Fig. 6 shows the distribution distances between SSA and the s-leaping method with different
stepsizes, applied to the Schlögl model. This figure suggests a linear convergence rate for the s-leaping
method. In this plot, we have K = 50 and N = 1,000,000. According to our estimation formula of the self
distance, we know that the self distance is around 0.008. The histogram errors we show in the plot are at
least 0.03, which is away from the self distance region. Thus, we can be sure that the distribution errors we
measured are mostly due to the s-leaping approximation rather than the ‘‘statistical fluctuation’’. We did
not plot the distribution error at stepsize 0.025 because that value was too close to the self distance to be
considered accurate.
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each given by SSA and the s-leaping method with different stepsizes applied to Schlögl model.
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In the above discussion, we have limited ourselves to the distribution distance measured at the end time. In
some other applications, the dynamical behavior is of concern. Thus, sometimes we need to measure the dis-
tribution distance not only at one time point but also on thewhole time interval. This requirement can be easily
achieved by collecting samples at several fixed time points during the time interval. The overall distribution
distance is thenmeasured by the sumof all the distribution distance at all time points. This generalized concept
of distribution distance can be applied to study the dynamical behavior in a system.
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Appendix A. Proof of Lemma 4.2

For a random variable X that follows the normal distribution N(0,r2), the probability density function is
pðsÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
e�

s2

2r2 . ð51Þ
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Thus, the mean of jXj is calculated by
EðjX jÞ ¼
Z 1

�1
jsj 1ffiffiffiffiffiffi

2p
p

r
e�

s2

2r2 ds ¼ 2

Z 1

0

s
1ffiffiffiffiffiffi
2p

p
r
e�

s2

2r2 ds ¼ 1ffiffiffiffiffiffi
2p

p
r

Z 1

0

e�
s2

2r2 ds2 ¼ 1ffiffiffiffiffiffi
2p

p
r
2r2 ¼

ffiffiffi
2

p

r
r.

ð52Þ

For the second moment, E(jXj2) = E(X2) = r2. Thus
VarðjX jÞ ¼ EðjX j2Þ � ðEðjX jÞÞ2 ¼ p� 2

p
r2. ð53Þ
Appendix B. Proof of Lemma 4.3

The linear combination theorem (p. 32 of [18]) gives:
E
XK
i¼1

aiX i

 !
¼
XK
i¼1

aiEðX iÞ; ð54Þ

Var
XK
i¼1

aiX i

 !
¼
XK
i¼1

a2iVarðX iÞ þ 2
Xn�1

i¼1

Xn
j¼iþ1

aiajcovfX i;X jg; ð55Þ
and the covariance range theorem (p. 33 of [18]) yields
jcovfX i;X jgj 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðX iÞVarðX iÞ

p
. ð56Þ
Thus
E
XK
i¼1

X i

 !
¼
XK
i¼1

EðX iÞ ð57Þ
and
Var
XK
i¼1

X i

 !
¼
XK
i¼1

VarðX iÞ þ 2
Xn�1

i¼1

Xn
j¼iþ1

covfX i;X jg

6

XK
i¼1

VarðX iÞ þ 2
Xn�1

i¼1

Xn
j¼iþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðX iÞVarðX jÞ

q
¼

XK
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðX iÞ

p !2

. ð58Þ
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